A novel featureless approach to mass detection in digital mammograms based on support vector machines.
نویسندگان
چکیده
In this work, we present a novel approach to mass detection in digital mammograms. The great variability of the appearance of masses is the main obstacle to building a mass detection method. It is indeed demanding to characterize all the varieties of masses with a reduced set of features. Hence, in our approach we have chosen not to extract any feature, for the detection of the region of interest; in contrast, we exploit all the information available on the image. A multiresolution overcomplete wavelet representation is performed, in order to codify the image with redundancy of information. The vectors of the very-large space obtained are then provided to a first support vector machine (SVM) classifier. The detection task is considered here as a two-class pattern recognition problem: crops are classified as suspect or not, by using this SVM classifier. False candidates are eliminated with a second cascaded SVM. To further reduce the number of false positives, an ensemble of experts is applied: the final suspect regions are achieved by using a voting strategy. The sensitivity of the presented system is nearly 80% with a false-positive rate of 1.1 marks per image, estimated on images coming from the USF DDSM database.
منابع مشابه
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملPattern recognition techniques for automatic detection of suspicious-looking anomalies in mammograms
We have employed two pattern recognition methods used commonly for face recognition in order to analyse digital mammograms. The methods are based on novel classification schemes, the AdaBoost and the support vector machines (SVM). A number of tests have been carried out to evaluate the accuracy of these two algorithms under different circumstances. Results for the AdaBoost classifier method are...
متن کاملMass Detection in Digital Mammograms Using Gabor Filter Bank
Digital Mammograms are currently the most effective imaging modality for early detection of breast cancer but the number of false negatives and false positives is high. Mass is one type of breast lesion and the detection of masses is highly challenged problem. Almost all methods that have been proposed so far suffer from high number of false positives and false negatives. In this paper, a metho...
متن کاملMCs Detection with Combined Image Features and Twin Support Vector Machines
Breast cancer is a common form of cancer diagnosed in women. Clustered microcalcifications(MCs) in mammograms is one of the important early sign. Their accurate detection is a key problem in computer aided detection (CDAe). In this paper, a novel approach based on the recently developed machine learning technique twin support vector machines (TWSVM) to detect MCs in mammograms. The ground truth...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2004